2023
DOI: 10.3390/infrastructures8040071
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of Strain in Embedded Rebars for RC Member, Application of Hybrid Learning Approach

Abstract: The aim of this study was to find strains in embedded reinforcement by monitoring surface deformations. Compared with analytical methods, application of the machine learning regression technique imparts a noteworthy reduction in modeling complexity caused by the tension stiffening effect. The present research aimed to achieve a hybrid learning approach for non-contact prediction of embedded strains based on surface deformations monitored by digital image correlation (DIC). However, due to the small training da… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?