Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Rubus idaeus is one of the primary cultivated species of raspberries, renowned for its appealing color, distinctive flavor and numerous health benefits. WIP proteins, which contain three conserved amino acids (W: Tryptophan, I: Isoleucine, P: Proline) and four zinc finger motifs in a highly conserved C-terminal region, are members of the A1d subgroup of C2H2 zinc finger proteins. Drought is one of the main limiting factors of plant growth and development, which restricts the cultivation and utilization of raspberry in northwest China. In this study, to obtain candidate genes for drought resistance, we identified key related genes, RiWIPs, from R. idaeus and analyzed their bioinformation and tissue stress response expression to drought. We found that there are three RiWIPs in R. idaeus and they are located on chromosomes 3, 4 and 6 of R. idaeus, respectively. The open reading frames (ORFs) of the RiWIPs ranged from 870 to 1056 bp in length, encoding 289 to 372 amino acid residues. The proteins were highly conserved and feature diverse conserved motifs. The promoters of the RiWIPs contained abundant cis-elements related to growth, development and stress response. Tissue-specific expression analysis revealed that the RiWIPs were expressed in the leaves, stems and roots of both drought-susceptible and drought-tolerant cultivars, except for RiWIP2, which was only expressed in the roots of the drought-tolerant one. Under drought stress, the transcriptional activity of the RiWIPs was increased to different degrees with specificity in the leaves, stems and roots. Our study demonstrated the role of WIP genes in raspberry drought response and provided a marker gene, RiWIP2, for drought resistance and candidate genes for subsequent drought-resistant breeding of R. idaeus.
Rubus idaeus is one of the primary cultivated species of raspberries, renowned for its appealing color, distinctive flavor and numerous health benefits. WIP proteins, which contain three conserved amino acids (W: Tryptophan, I: Isoleucine, P: Proline) and four zinc finger motifs in a highly conserved C-terminal region, are members of the A1d subgroup of C2H2 zinc finger proteins. Drought is one of the main limiting factors of plant growth and development, which restricts the cultivation and utilization of raspberry in northwest China. In this study, to obtain candidate genes for drought resistance, we identified key related genes, RiWIPs, from R. idaeus and analyzed their bioinformation and tissue stress response expression to drought. We found that there are three RiWIPs in R. idaeus and they are located on chromosomes 3, 4 and 6 of R. idaeus, respectively. The open reading frames (ORFs) of the RiWIPs ranged from 870 to 1056 bp in length, encoding 289 to 372 amino acid residues. The proteins were highly conserved and feature diverse conserved motifs. The promoters of the RiWIPs contained abundant cis-elements related to growth, development and stress response. Tissue-specific expression analysis revealed that the RiWIPs were expressed in the leaves, stems and roots of both drought-susceptible and drought-tolerant cultivars, except for RiWIP2, which was only expressed in the roots of the drought-tolerant one. Under drought stress, the transcriptional activity of the RiWIPs was increased to different degrees with specificity in the leaves, stems and roots. Our study demonstrated the role of WIP genes in raspberry drought response and provided a marker gene, RiWIP2, for drought resistance and candidate genes for subsequent drought-resistant breeding of R. idaeus.
Troides aeacus is the largest butterfly in China and is highly valued for its ornamental beauty. Due to T. aeacus being classified as a national second-class protected species in China, studying its spatial distribution is crucial for developing effective conservation measures. In this study, a total of 490 distribution points were obtained, and the potential distribution areas of the golden-sheathed T. aeacus were analyzed by using the maximum entropy model (MaxEnt) based on three different greenhouse gas emission scenarios, namely, SSP1-2.6, SSP2-4.5, and SSP5-8.5, in combination with nine important environmental variables. The results indicate that temperature and precipitation are the primary environmental factors influencing the suitable habitat of T. aeacus, with key variables including the minimum temperature of the coldest month (bio6), temperature annual range (bio7), mean temperature of the warmest quarter (bio10), annual precipitation (bio12), precipitation of the coldest quarter (bio19), and slope. The height distribution of T. aeacus in my country is in the area south of the Huaihe River in the Qinling Mountains, with a total area of 270.96 × 104 km2, accounting for 28.23% of the total area of China. According to future climate change conditions, as climate warming progresses, both low- and high-suitability areas show an expansion trend in most scenarios, particularly under the SSP5-8.5 scenario, where highly suitable areas increase significantly while moderately suitable areas gradually shrink. To address future climate change, conservation strategies should focus on protecting highly suitable areas and strengthening the management of marginal habitats to enhance the adaptability and survival chances of T. aeacus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.