Objective Polysomnography (PSG) is unique in diagnosing sleep disorders, notably obstructive sleep apnea (OSA). Despite its advantages, manual PSG data grading is time-consuming and laborious. Thus, this research evaluated a deep learning-based automated scoring system for respiratory events in sleep-disordered breathing patients. Methods A total of 1000 case PSG data were enrolled to develop a deep learning algorithm. Of the 1000 data, 700 were distributed for training, 200 for validation, and 100 for testing. The respiratory events scoring deep learning model is composed of five sequential layers: an initial layer of perceptrons, followed by three consecutive layers of long short-term memory cells, and ultimately, an additional two layers of perceptrons. Results The PSG data of 100 patients (simple snoring, mild, moderate, and severe OSA; n = 25 in each group) were selected for validation and testing of the deep learning model. The algorithm demonstrated high sensitivity (95% CI: 98.06–98.51) and specificity (95% CI: 95.46–97.79) across all OSA severities in detecting apnea/hypopnea events, compared to manual PSG analysis. The deep learning model's area under the curve values for predicting OSA in apnea-hypopnea index ≥ 5, 15, and 30 groups were 0.9402, 0.9388, and 0.9442, respectively, showing no significant differences between each group. Conclusion The deep learning algorithm employed in our study showed high accuracy in identifying apnea/hypopnea episodes and assessing the severity of OSA, suggesting the potential for enhancing both the efficiency and accuracy of automated respiratory event scoring in PSG through advanced deep learning techniques.