2023
DOI: 10.3847/1538-4365/acf218
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of the Transit Time of Coronal Mass Ejections with an Ensemble Machine-learning Method

Y. Yang,
J. J. Liu,
X. S. Feng
et al.

Abstract: Coronal mass ejections (CMEs), a kind of violent solar eruptive activity, can exert a significant impact on space weather. When arriving at the Earth, they interact with the geomagnetic field, which can boost the energy supply to the geomagnetic field and may further result in geomagnetic storms, thus having potentially catastrophic effects on human activities. Therefore, accurate forecasting of the transit time of CMEs from the Sun to the Earth is vital for mitigating the relevant losses brought by them. XGBo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 67 publications
0
2
0
Order By: Relevance
“…Inspired by their work, Yang et al (2018) developed a model for predicting hourly solar wind speeds 4 days in advance. Machine-learning techniques have also been applied in other studies: the prediction of CME arrival times at Earth (Sudar et al 2016;Liu et al 2018;Wang et al 2019a;Fu et al 2021;Yang et al 2023), predictions of solar flares (Bobra & Ilonidis 2016;Huang et al 2018;Park et al 2018;Li et al 2020;Zheng et al 2021), predictions of relativistic electrons at geosynchronous orbit (Shin et al 2016;Bortnik et al 2018;Wei et al 2018;Zhang et al 2020), predictions of geomagnetic activity Gruet et al 2018;Chakraborty & Morley 2020), and predictions of solar wind speeds (Upendran et al 2020;Bailey et al 2021;Sun et al 2022).…”
Section: Introductionmentioning
confidence: 99%
“…Inspired by their work, Yang et al (2018) developed a model for predicting hourly solar wind speeds 4 days in advance. Machine-learning techniques have also been applied in other studies: the prediction of CME arrival times at Earth (Sudar et al 2016;Liu et al 2018;Wang et al 2019a;Fu et al 2021;Yang et al 2023), predictions of solar flares (Bobra & Ilonidis 2016;Huang et al 2018;Park et al 2018;Li et al 2020;Zheng et al 2021), predictions of relativistic electrons at geosynchronous orbit (Shin et al 2016;Bortnik et al 2018;Wei et al 2018;Zhang et al 2020), predictions of geomagnetic activity Gruet et al 2018;Chakraborty & Morley 2020), and predictions of solar wind speeds (Upendran et al 2020;Bailey et al 2021;Sun et al 2022).…”
Section: Introductionmentioning
confidence: 99%
“…Liu et al (2018) utilized the support vector machine to analyze various parameters of CMEs for predicting the transit time of CMEs from the Sun to the Earth. Yang et al (2023) employed the ensemble learning method XGBoost and introduced two effective feature importance ranking methods.…”
Section: Introductionmentioning
confidence: 99%