2023
DOI: 10.53106/160792642023072404005
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of Yarn Quality Based on Actual Production

Abstract: <p>In recent decades, the neural network approach to predicting yarn quality indicators has been recognized for its high accuracy. Although using neural networks to predict yarn quality indicators has a high accuracy advantage, its relationship understanding between each input parameter and yarn quality indicators may need to be corrected, i.e., increasing the raw cotton strength, the final yarn strength remains the same or decreases. Although this is normal for prediction algorithms, actual production n… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 15 publications
0
0
0
Order By: Relevance