Predictions of Boron Phase Stability Using an Efficient Bayesian Machine Learning Interatomic Potential
Hao Deng,
Bin Liu
Abstract:Thermodynamic phase stability of three elemental boron allotropes, i.e., α-B, β-B, and γ-B, was investigated using a Bayesian interatomic potential trained via a sparse Gaussian process (SGP). SGP potentials trained with data sets from on-the-fly active learning achieve quantum mechanical level accuracy when employed in molecular dynamics (MD) simulations to predict wide-ranging thermodynamic, structural, and vibrational properties. The simulated phase diagram (500−1400 K and 0−16 GPa) agrees with experimental… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.