Unreinforced masonry (URM) buildings in historic urban areas of European countries are generally clustered in an aggregate configuration and are often characterized by façade walls mutually interconnected with adjacent ones. As a result, the seismic performance of buildings in an aggregate configuration can be affected by the mutual interaction between the adjacent units. This interaction, often called the aggregate effect, could significantly influence the level of the seismic vulnerability of URM buildings in aggregate configuration toward in-plane and out-of-plane mechanisms, the latter being the object of the present paper. Traditional methods for assessing the seismic vulnerability of URM buildings neglect the interactions between adjacent buildings, potentially underestimating the actual vulnerability. This study aims to derive fragility curves specific for UMR buildings in aggregate configuration and proposes an innovative methodology that introduces the aggregate effect into an analytical approach, previously developed by the authors for isolated URM buildings. The aggregate effect is modeled by accounting for the friction forces arising among adjacent facades during the development of out-of-plane overturning mechanisms by considering different scenarios, based on how façade walls interact with neighboring structures (e.g., whether they are connected to transverse and/or lateral coplanar ones). The proposed approach is applied to a real case study of an Italian historical center. The obtained results demonstrate that the aggregate effect significantly influences the fragility curves of URM buildings arranged in aggregate configurations. This highlights the importance of considering this effect and the usefulness of the proposed approach for large-scale assessments of seismic vulnerability in historic urban areas, contributing to sustainable disaster risk prevention.