2021
DOI: 10.20944/preprints202109.0099.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Predictive Maintenance: An Autoencoder Anomaly-based Approach for a 3 DoF Delta Robot

Abstract: Performing predictive maintenance (PdM) is challenging for many reasons. Dealing with large datasets which may not contain run-to-failure data (R2F) complicates PdM even more. When no R2F data are available, identifying condition indicators (CIs), estimating the health index (HI), and thereafter, calculating a degradation model for predicting the remaining useful lifetime (RUL) are merely impossible using supervised learning. In this paper, a 3 dof delta robot used for pick and place task is studied. In the pr… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 25 publications
0
2
0
Order By: Relevance
“…These records are extracted later or in real time to apply PdM. Examples of this case are found on the one hand in industrial processes (Bampoula et al, 2021; Bekar et al, 2020; Chang et al, 2021; Kim et al, 2021; Kolokas et al, 2020; Lepenioti et al, 2020; Li et al, 2017; Morariu et al, 2020; Rafique et al, 2018; Ruiz‐Sarmiento et al, 2020; Susto et al, 2015; Uhlmann et al, 2018; Zschech et al, 2019), in production lines (Ayvaz & Alpay, 2021; Azab et al, 2021; Cerquitelli et al, 2021; Fathi et al, 2021; Giordano et al, 2021; Liu et al, 2021), in power plants (de Carvalho Chrysostomo et al, 2020; Khodabakhsh et al, 2018; Sun et al, 2021; Zhang, Liu, et al, 2018), in wind turbines (Chen, Hsu, et al, 2021; Leahy et al, 2018; Santolamazza et al, 2021), in ventilation systems (Fernandes et al, 2020), cryogenic pumps (Crespo Márquez et al, 2020), heat meters (Pałasz & Przysowa, 2019), press machines (Serradilla et al, 2021), or water treatment plants (Srivastava et al, 2018). Another common scenario for PdM is related to transportation: different types of land vehicles (Chen et al, 2020; Patil et al, 2021; Prytz et al, 2015; Shafi et al, 2018), aircrafts (Baptista et al, 2021; Basora et al, 2021; Ning et al, 2021; Savitha et al, 2020; Yang et al, 2017), and naval ships (Berghout et al, 2021; Fernández‐Barrero et al, 2021; Gribbestad et al, 2021) have been monitored through their electronic control units.…”
Section: Data Mining In Predictive Maintenancementioning
confidence: 99%
See 1 more Smart Citation
“…These records are extracted later or in real time to apply PdM. Examples of this case are found on the one hand in industrial processes (Bampoula et al, 2021; Bekar et al, 2020; Chang et al, 2021; Kim et al, 2021; Kolokas et al, 2020; Lepenioti et al, 2020; Li et al, 2017; Morariu et al, 2020; Rafique et al, 2018; Ruiz‐Sarmiento et al, 2020; Susto et al, 2015; Uhlmann et al, 2018; Zschech et al, 2019), in production lines (Ayvaz & Alpay, 2021; Azab et al, 2021; Cerquitelli et al, 2021; Fathi et al, 2021; Giordano et al, 2021; Liu et al, 2021), in power plants (de Carvalho Chrysostomo et al, 2020; Khodabakhsh et al, 2018; Sun et al, 2021; Zhang, Liu, et al, 2018), in wind turbines (Chen, Hsu, et al, 2021; Leahy et al, 2018; Santolamazza et al, 2021), in ventilation systems (Fernandes et al, 2020), cryogenic pumps (Crespo Márquez et al, 2020), heat meters (Pałasz & Przysowa, 2019), press machines (Serradilla et al, 2021), or water treatment plants (Srivastava et al, 2018). Another common scenario for PdM is related to transportation: different types of land vehicles (Chen et al, 2020; Patil et al, 2021; Prytz et al, 2015; Shafi et al, 2018), aircrafts (Baptista et al, 2021; Basora et al, 2021; Ning et al, 2021; Savitha et al, 2020; Yang et al, 2017), and naval ships (Berghout et al, 2021; Fernández‐Barrero et al, 2021; Gribbestad et al, 2021) have been monitored through their electronic control units.…”
Section: Data Mining In Predictive Maintenancementioning
confidence: 99%
“…In a second stage, the detected anomalous points are merged by a low-pass filter for subsequence outlier detection. Fathi et al (2021) also explored the CNN-based AE to perform novelty detection over the time series, previously fragmented for batch processing. The reconstruction error obtained from the AE is passed to a minimax optimized sigmoid function to infer the health index of the monitored system, that depends on if an anomaly has been detected or not.…”
Section: Deep Learningmentioning
confidence: 99%