Non-conventional processes are considerably important for the machining of hard-to-cut alloys in various demanding applications. Given that the surface quality and integrity, dimensional accuracy, and productivity are important considerations in industrial practice, the prediction of the outcome of the material removal process should be able to be conducted with sufficient accuracy, taking into consideration the computational cost and difficulty of implementation of the relevant models. In the case of AWJ, various types of approaches have been already proposed, both relying on analytical or empirical models and developed by solving partial differential equations. As the creation of a model for AWJ pocket milling is rather demanding, given the number of parameters involved, in the present work, it is intended to compare the use of three different types of efficient modeling approaches for the prediction of the dimensions of pockets milled by AWJ technology. The models are developed and evaluated based on experimental results of AWJ pocket milling of a titanium workpiece by an eco-friendly walnut shell abrasive. The results indicate that a semi-empirical approach performs better than a two-step hybrid analytical/semi-empirical method regarding the selected cases, but both methods show promising results regarding the realistic representation of the pocket shape, which can be further improved by a probabilistic approach.