Laser scribing is an important manufacturing process used to reduce photocurrent and resistance losses and increase solar cell efficiency through the formation of serial interconnections in large-area solar cells. High-quality scribing is crucial since the main impediment to large-scale adoption of solar power is its high production cost (price-per-watt) compared to competing energy sources such as wind and fossil fuels. In recent years, the use of glass-side laser scribing processes has led to increased scribe quality and solar cell efficiencies, however, defects introduced during the process such as thermal effect, micro cracks, film delamination, and removal uncleanliness keep the modules from reaching their theoretical efficiencies. Moreover, limited numerical work has been performed in predicting thin film laser removal processes. In this study, a nanosecond (ns) laser with a wavelength at 532nm is employed for pattern 2 (P2) scribing on CdTe (Cadmium telluride) based thin-film solar cells. The film removal mechanism and defects caused by laser-induced micro-explosion process are studied. The relationship between those defects, removal geometry, laser fluences and scribing speeds are also investigated. Thermal and mechanical numerical models are developed to analyze the laser-induced spatio-temporal temperature and pressure responsible for film removal. The simulation can well-predict the film removal geometries, generation of micro cracks, film delamination and remaining materials. The characterization of removal qualities will enable the process optimization and design required to enhance solar module efficiency.