Predictive Modeling of Future Full-Ocean Depth SSPs Utilizing Hierarchical Long Short-Term Memory Neural Networks
Jiajun Lu,
Hao Zhang,
Pengfei Wu
et al.
Abstract:The spatial-temporal distribution of underwater sound speed plays a critical role in determining the propagation mode of underwater acoustic signals. Therefore, rapid estimation and prediction of sound speed distribution are imperative for facilitating underwater positioning, navigation, and timing (PNT) services. While sound speed profile (SSP) inversion methods offer quicker response times compared to direct measurement methods, these methods often focus on constructing spatial sound velocity fields and heav… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.