Students' information in higher education institutions increases yearly. It is hard for them to extract meaningful information from the huge amount of data manually. Such information can support academic staff to stop students from dropping out at the end of courses. This can be done by evaluating the students' performance for the course and also by predicting their performance in the final exam early by using classification algorithms. Four classification algorithms, which are Decision Tree C4.5, Random Forest, Support Vector Machine (SVM) and Naive Bayes, were used in this research in order to classify and predict the students' performance. Furthermore, this research aimed at improving the Decision Tree C4.5 algorithm by adding a grid search function in order to improve prediction accuracy in classifying and predicting the students' performance. Also, the features of this evaluation have been extracted through the interviews with academic staff of three universities (