Introduction
Exercise produces an immediate lessening of pain sensitivity (Exercise-Induced Hypoalgesia (EIH)) in healthy individuals at local and distant sites, possibly through a shared mechanism with conditioned pain modulation (CPM). Dynamic resistance exercise is a recommended type of exercise to reduce pain, yet limited research has examined the effects of intensity on EIH during this type of exercise. Therefore, the primary purpose of this study is to compare changes in PPT at a local and distant site during a leg extension exercise at a high intensity, a low intensity, or a quiet rest condition. A secondary purpose is to examine if CPM changes after each intervention. The final purpose is to examine if baseline pain sensitivity measures are correlated with response to each intervention.
Methods
In a randomized controlled trial of 60 healthy participants, participants completed baseline pain sensitivity testing (heat pain threshold, temporal summation, a cold pressor test as measure of CPM) and were randomly assigned to complete a knee extension exercise at: 1) high intensity (75% of a 1 Repetition Maximum (RM), 2) low intensity (30% 1RM), or 3) Quiet Rest. PPT was measured between each set at a local (quadriceps) and distant (trapezius) site during the intervention. CPM was then repeated after the intervention. To test the first purpose of the study, a three-way ANOVA examined for time x site x intervention interaction effects. To examine for changes in CPM by group, a mixed-model ANOVA was performed. Finally, a Pearson Correlation examined the association between baseline pain sensitivity and response to each intervention.
Results
Time x site x intervention interaction effects were not significant (F(5.3, 150.97) = 0.87, p = 0.51, partial eta2 = 0.03). CPM did not significantly change after the interventions (time x intervention F(1,38) = 0.81, p = 0.37, partial eta2 = 0.02. EIH effects at the quadriceps displayed a significant, positive moderate association with baseline HPT applied over the trapezius (r = 0.61, p<0.01) and TS (r = 0.46, p = 0.04).
Discussion
In healthy participants, PPT and CPM did not significantly differ after a leg extension exercise performed at a high intensity, low intensity, or quiet rest condition. It is possible pre-intervention CPM testing with a noxious stimuli may have impaired inhibitory effects frequently observed during exercise but future research would need to examine this hypothesis.