In this paper, a predictor-based controller for a 7-DOF Baxter manipulator is formulated to compensate a time-invariant input delay during a pick-and-place task. Robot manipulators are extensively employed because of their reliable, fast, and precise motions although they are subject to large time delays like many engineering systems. The time delay may lead to the lack of high precision required and even catastrophic instability. Using common control approaches on such delay systems can cause poor control performance, and uncompensated input delays can produce hazards when used in engineering applications. Therefore, destabilizing time delays need to be regarded in designing control law. First, delay-free dynamic equations are derived using the Lagrangian method. Then, we formulate a predictor-based controller for a 7-DOF Baxter manipulator, in the presence of input delay, in order to track desirable trajectories. Finally, the results are experimentally evaluated.