Background: CrossFit® involves high-intensity functional movements and research has shown that the program increases metabolic rates in participants. Objective: To measure resting energy expenditure (REE) in CrossFit® participants using indirect calorimetry (IC) and to verify the most appropriate predictive equation to estimate REE. Methods: Overall, 142 CrossFit® participants (18–59 years; 91 [64.1%], women) underwent weight, height, waist circumference, and body mass index (BMI) measurements. Body composition was evaluated using a portable ultrasound system (BodyMetrix®). REEs were measured (mREE) by IC and predicted by six different equations (pREE): Harris-Benedict, World Health Organization (WHO), Henry and Rees, Cunningham (1980 and 1991), and Mifflin–St. Jeor. Results: The mean age was 33.0 (6.3) years, with no significant difference between men and women; mean mREE, 1583.2(404.4) kcal/d; and pREE, 1455.5(230.9) to 1711.3(285.5) kcal/d. The best REE predictive equations for this population were Cunningham (1991) (P=0.338), WHO (P=0.494), and Harris-Benedict (P=0.705) equations. The Harris-Benedict equation presented a smaller difference compared with IC [12.9(307.6) kcal], the Cunningham (1991) equation showed improved adequacy (102.5%), and the WHO equation presented highest accuracy (59.9%). The equations that were closest to the mREE were the Harris-Benedict for women and the WHO equation for men. Conclusion: Therefore, for CrossFit® participants, the REE can accurately be predicted with the Cunningham (1991), WHO, and Harris-Benedict equations.