ImportanceAortic stenosis (AS) is a major public health challenge with a growing therapeutic landscape, but current biomarkers do not inform personalized screening and follow-up. A video-based artificial intelligence (AI) biomarker (Digital AS Severity index [DASSi]) can detect severe AS using single-view long-axis echocardiography without Doppler characterization.ObjectiveTo deploy DASSi to patients with no AS or with mild or moderate AS at baseline to identify AS development and progression.Design, Setting, and ParticipantsThis is a cohort study that examined 2 cohorts of patients without severe AS undergoing echocardiography in the Yale New Haven Health System (YNHHS; 2015-2021) and Cedars-Sinai Medical Center (CSMC; 2018-2019). A novel computational pipeline for the cross-modal translation of DASSi into cardiac magnetic resonance (CMR) imaging was further developed in the UK Biobank. Analyses were performed between August 2023 and February 2024.ExposureDASSi (range, 0-1) derived from AI applied to echocardiography and CMR videos.Main Outcomes and MeasuresAnnualized change in peak aortic valve velocity (AV-Vmax) and late (>6 months) aortic valve replacement (AVR).ResultsA total of 12 599 participants were included in the echocardiographic study (YNHHS: n = 8798; median [IQR] age, 71 [60-80] years; 4250 [48.3%] women; median [IQR] follow-up, 4.1 [2.4-5.4] years; and CSMC: n = 3801; median [IQR] age, 67 [54-78] years; 1685 [44.3%] women; median [IQR] follow-up, 3.4 [2.8-3.9] years). Higher baseline DASSi was associated with faster progression in AV-Vmax (per 0.1 DASSi increment: YNHHS, 0.033 m/s per year [95% CI, 0.028-0.038] among 5483 participants; CSMC, 0.082 m/s per year [95% CI, 0.053-0.111] among 1292 participants), with values of 0.2 or greater associated with a 4- to 5-fold higher AVR risk than values less than 0.2 (YNHHS: 715 events; adjusted hazard ratio [HR], 4.97 [95% CI, 2.71-5.82]; CSMC: 56 events; adjusted HR, 4.04 [95% CI, 0.92-17.70]), independent of age, sex, race, ethnicity, ejection fraction, and AV-Vmax. This was reproduced across 45 474 participants (median [IQR] age, 65 [59-71] years; 23 559 [51.8%] women; median [IQR] follow-up, 2.5 [1.6-3.9] years) undergoing CMR imaging in the UK Biobank (for participants with DASSi ≥0.2 vs those with DASSi <.02, adjusted HR, 11.38 [95% CI, 2.56-50.57]). Saliency maps and phenome-wide association studies supported associations with cardiac structure and function and traditional cardiovascular risk factors.Conclusions and RelevanceIn this cohort study of patients without severe AS undergoing echocardiography or CMR imaging, a new AI-based video biomarker was independently associated with AS development and progression, enabling opportunistic risk stratification across cardiovascular imaging modalities as well as potential application on handheld devices.