Background Ultrafiltration (UF) failure mostly contributes to technical failure in peritoneal dialysis (PD) patients, and one of its responsible factors is peritoneal angiogenesis. Resveratrol has been proposed to have an angiogenesis-ameliorating effect on tumor patients. We hypothesize transresveratrol has beneficial effects on angiogenesis-related markers in PD patients. Methods In this prospective, randomized, and double-blind trial, 72 patients were randomly assigned to 12-week treatment of low-dose or high-dose (150 or 450 mg/d) trans-resveratrol or a placebo. Visits were scheduled at 0, 4, 8, and 12 weeks after treatment. Clinical indices including 24-hour UF volume, UF rate, 24-hour urine volume, residual renal function, and dialysis adequacy (kt/v) were measured. Angiogenesis markers including vascular endothelial growth factor (VEGF), fetal liver kinase-1 (Flk-1), angiopoietin-2 (Ang-2), tyrosine kinase 2 (Tie-2), and thrombospondin-1 (Tsp-1) in peritoneal effluent were also assessed by enzyme-linked immunosorbent assay. Results Finally, 64 out of 72 patients were analyzed, 18 in the high-dose group, 22 in the low-dose group, and 24 in the placebo group. Over the 12-week period, patients in the high-dose group [mean change from baseline (95% CI): 171.4 (141.3-201.5) (mL), p Âź 0.003 (Net UF); 11.3(10.5-12.1) (mL/h), p Âź 0.02 (UF rate)] or the low-dose group [mean change from baseline (95% CI: 98.1 (49.5-146.7) (mL), p Âź 0.007 (Net UF); 6.5 (4.4-8.6) (mL/h), p Âź 0.04 (UF rate)] versus the placebo group had a significantly greater improvement in mean net UF volume and UF rate. The appearance rates of VEGF, Flk-1, and Ang-2 were more significantly reduced (appearance rates of Tie-2 and Tsp-1 increased) in the high-dose group versus the placebo group, but not in the low-dose group. Conclusion Supplementation with trans-resveratrol is beneficial to improve ultrafiltration in PD patients, and high-dose supplementation may improve ultrafiltration by ameliorating angiogenesis induced by conventional lactate-buffered PD solutions.