Anais Do XXI Simpósio Em Sistemas Computacionais De Alto Desempenho (SSCAD 2020) 2020
DOI: 10.5753/wscad.2020.14078
|View full text |Cite
|
Sign up to set email alerts
|

Preditor de Desempenho de GPUs aplicado à Exploração do Espaço de Projetos ciente de Dark Silicon

Abstract: Simuladores de sistemas heterogêneos GP-GPU procuram oferecer acurácia de desempenho ao custo de elevado tempo de execução. Com o objetivo de evitar o custoso processo de simulação durante as etapas de exploração arquitetural de sistemas baseados em GPUs, desenvolvemos e avaliamos diversos preditores de desempenho de GPUs baseados em algoritmos de aprendizado de máquina com acurácia e baixo custo computacional. A qualidade dos preditores desenvolvidos neste trabalho foi avaliada por meio de métricas como coefic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(4 citation statements)
references
References 14 publications
0
4
0
Order By: Relevance
“…The same authors of this work have already published some papers in the same context, ranging from the design of MultiExplorer, 3 the dark‐silicon estimates for CPU and GPU, 30 the integration of CPU performance predictors 34 and a preliminary version of the integration of predictors of GPU performance 35 …”
Section: Discussionmentioning
confidence: 99%
See 3 more Smart Citations
“…The same authors of this work have already published some papers in the same context, ranging from the design of MultiExplorer, 3 the dark‐silicon estimates for CPU and GPU, 30 the integration of CPU performance predictors 34 and a preliminary version of the integration of predictors of GPU performance 35 …”
Section: Discussionmentioning
confidence: 99%
“…We replaced the optimistic MultiExplorer approach for performance estimates by a SVM-based regressor to CPU performance estimates systems 34 and a Decision Tree-based regressor to GPUs. 9,35 In order to explore heterogeneous architectural alternatives, we have set MultiExplorer DS-DSE module to use up to two types of computing cores: one is original computing unit (16-core Smithfield) and other alternative cores (any other from the Table 8), which must meet the area and power density constraints, ranked for the performance they can achieve.…”
Section: Gpu Performance Predictor Validation In the Dark-silicon-awa...mentioning
confidence: 99%
See 2 more Smart Citations