Here we report that lean mice infected with the intracellular parasite Neospora
caninum show a fast but sustained increase in the frequency of
IFN-γ-producing cells noticeable in distinct adipose tissue depots.
Moreover, IFN-γ-mediated immune memory could be evoked in vitro
in parasite antigen-stimulated adipose tissue stromal vascular fraction cells
collected from mice infected one year before. Innate or innate-like cells such as
NK, NK T and TCRγδ+ cells, but also
CD4+ and CD8+ TCRβ+
lymphocytes contributed to the IFN-γ production observed since day one
of infection. This early cytokine production was largely abrogated in IL-12/IL23
p40-deficient mice. Moreover, production of IFN-γ by stromal vascular
fraction cells isolated from these mice was markedly lower than that of wild-type
counterparts upon stimulation with parasite antigen. In wild-type mice the increased
IFN-γ production was concomitant with up-regulated expression of genes
encoding interferon-inducible GTPases and nitric oxide synthase, which are important
effector molecules in controlling intracellular parasite growth. This increased gene
expression was markedly impaired in the p40-deficient mice. Overall, these results
show that NK cells but also diverse T cell populations mediate a prompt and
widespread production of IFN-γ in the adipose tissue of N.
caninum infected mice.