Kyasanur Forest Disease Virus (KFDV) causing common tick-borne hemorrhagic fever in south India, there is no approved anti-viral or efficacious vaccine against this disease. Recent KFDV spread into new geographic locations gives urgent call for development of new vaccine and drugs. In this study, we adapted in-silico approach to design multi-epitope subunit vaccine for KFDV. Conserved regions of KFDV envelope protein sequences reported during 1962 to 2016 were identified. Eight different immuno-informatics tools were employed to predict the linear B-cell and T-cell epitopes, high scored and/or multi-immunogenic epitopes were linked together and obtained two vaccine candidates (VC1 and VC2). Obtained vaccine candidates were found to be non-allergic and had good antigenic properties, also gives the cross-protection against to Alkhurma Hemorrhagic Fever virus (AHFV). The 3D structures of vaccine candidates were built and validated. Docking of vaccine candidates with toll-like receptor-8 (TLR-8) was performed by Hex 8.0 and Cluspro, highest binding energy observed between VC2 and TLR8. JCAT sever confirmed cloning efficiency of both vaccine constructs and in-silico cloning into pET30a (+) vector by SnapGene suggests successful translation of vaccine constructs. In this study, multi-epitope vaccine candidates were designed and validated, it paves the way for up-coming vaccine and diagnostic kit development.