There is a growing literature examining working memory deficits using functional imaging and there has been great convergence in the findings, to date, but interpretations have varied. Investigators consistently observed recruitment of neural resources in clinical samples, with some examiners attributing these findings to neural inefficiency and others attributing differences to neural compensation and0or brain reorganization. It is the goal of this paper to address the current interpretation of altered brain activation in clinical imaging studies of working memory dysfunction with specific emphasis on findings in prefrontal cortex (PFC). Throughout this review, the methods used to examine brain reorganization associated with working memory dysfunction are critiqued with the goal of understanding how study design has influenced data interpretation. It is proposed that much of what has been considered "aberrant" neural activity is not indicative of neural compensation, as it has been typically defined, and does not represent brain reorganization. Instead, recruitment of neural resources in PFC can be explained by a natural, and largely overlooked, role of cognitive control in accommodating neural dysfunction secondary to brain injury and disease. This paper provides predictions based on this proposition and a critique of the current methods available for testing these predictions. (JINS, 2008, 14, 526-534.) Keywords: Plasticity, Traumatic brain injury, MS, Working memory, Reorganization, Cognitive control, Prefrontal, Functional magnetic resonance imaging
An Alternative to Brain Reorganization HypothesesFunctional imaging techniques afford the unique opportunity to examine the relationships between basic brain changes and the behavioral deficits associated with brain injury and disease. There is a growing functional imaging literature examining the effects of neurological insult on working memory (WM), or the ability to maintain and0or manipulate small amounts of information for brief periods of time. In the functional imaging literature examining WM dysfunction, there has been increasing reference to "neural compensation" and "brain reorganization" to describe the altered (and almost universally increased) neural activation observed when comparing clinical samples to healthy adults. Specifically, the term "compensation" has been used to describe either transient or permanent alterations in neural activity, which operates to facilitate performance. Therefore, in this paper, the term "compensation" will be used to indicate a positive relationship between task performance and brain activation. The term "brain reorganization" has typically been used to indicate that the neural networks associated with WM have been permanently altered because of neurological insult, so that insult induces a "rewiring" of WM networks. Therefore, the primary distinction between "compensation" and "brain reorganization" is that the former may be transient whereas the latter represents permanent changes in the neural networks ...