Plateau inflation is an experimentally consistent framework in which the scale of inflation can be kept relatively low. Close to the edge of the plateau, scalar perturbations are subject to a strong tachyonic instability. Tachyonic preheating is realized when, after inflation, the oscillating inflaton repeatedly re-enters the plateau. We develop the analytic theory of this process and expand the linear approach by including backreaction between the coherent background and growing perturbations. For a family of plateau models, the analytic predictions are confronted with numerical estimates. Our analysis shows that the inflaton fragments in a fraction of an e-fold in all examples supporting tachyonic preheating, generalizing the results of previous similar studies. In these scenarios, the scalar-to-tensor ratio is tiny, r < 10 −7 .