Advances in speech and language processing have enabled the creation of applications that could, in principle, accelerate the process of language documentation, as speech communities and linguists work on urgent language documentation and reclamation projects. However, such systems have yet to make a significant impact on language documentation, as resource requirements limit the broad applicability of these new techniques. We aim to exploit the framework of shared tasks to focus the technology research community on tasks which address key pain points in language documentation. Here we present initial steps in the implementation of these new shared tasks, through the creation of data sets drawn from endangered language repositories and baseline systems to perform segmentation and speaker labeling of these audio recordings—important enabling steps in the documentation process. This paper motivates these tasks with a use case, describes data set curation and baseline systems, and presents results on this data. We then highlight the challenges and ethical considerations in developing these speech processing tools and tasks to support endangered language documentation.