The effect of non-fuel part size on the thermal-mechanical performance of fully ceramic microencapsulated (FCMTM) Fuel was investigated, and the non-fuel part size was selected according to integrity maintaining of non-fuel part and silicon carbide (SiC) layers. The non-fuel part size can affect the FCMTM temperature and stress distribution greatly by changing the distance between tristructural isotropic (TRISO) particles. The maximum temperature of SiC matrix increased from 1220 K to 1450 K with the non-fuel part size increasing from 100 μm to 500 μm, and the matrix temperature of all the samples was lower than the decomposition point of SiC ceramics. The maximum hoop stress decreased with non-fuel part size, but the inner part exhibiteda crosscurrent trend. The inner part of the SiC matrix lost structure integrity because of the large hoop stress caused by the deformation of TRISO particles, however, the non-fuel parts of FCMTM pellet may maintain their integrity when the non-fuel part size was larger than 300 μm. SiC layers hoop stress increased with non-fuel part size, and the failure probability of SiC layer was lower than 2.2 × 10−4 for the FCMTM pellet with small non-fuel part size. The integrity of non-fuel and SiC layers can be maintained for the FCMTM pellet with the non-fuel part size from 300 μm to 400 μm.