Abstract. In this paper we use MEDSLIK-II, a Lagrangian marine surface oil spill model described in Part 1 , to simulate oil slick transport and transformation processes for realistic oceanic cases, where satellite or drifting buoys data are available for verification. The model is coupled with operational oceanographic currents, atmospheric analyses winds and remote sensing data for initialization. The sensitivity of the oil spill simulations to several model parameterizations is analyzed and the results are validated using surface drifters, SAR (synthetic aperture radar) and optical satellite images in different regions of the Mediterranean Sea. It is found that the forecast skill of Lagrangian trajectories largely depends on the accuracy of the Eulerian ocean currents: the operational models give useful estimates of currents, but high-frequency (hourly) and high-spatial resolution is required, and the Stokes drift velocity has to be added, especially in coastal areas. From a numerical point of view, it is found that a realistic oil concentration reconstruction is obtained using an oil tracer grid resolution of about 100 m, with at least 100 000 Lagrangian particles. Moreover, sensitivity experiments to uncertain model parameters show that the knowledge of oil type and slick thickness are, among all the others, key model parameters affecting the simulation results. Considering acceptable for the simulated trajectories a maximum spatial error of the order of three times the horizontal resolution of the Eulerian ocean currents, the predictability skill for particle trajectories is from 1 to 2.5 days depending on the specific current regime. This suggests that re-initialization of the simulations is required every day.