Restricted syndrome decoding problems (R-SDP and R-SDP(
G
)) provide an interesting basis for post-quantum cryptography. Indeed, they feature in CROSS, a submission in the ongoing process for standardizing post-quantum signatures.
This work improves our understanding of the security of both problems. Firstly, we propose and implement a novel collision attack on R-SDP(
G
) that provides the best attack under realistic restrictions on memory. Secondly, we derive precise complexity estimates for algebraic attacks on R-SDP that are shown to be accurate by our experiments. We note that neither of these improvements threatens the updated parameters of CROSS.