Abstract:The authors discuss in this paper the potential of two power plant concepts for distributed generation, based on the integration of a cogenerating micro gas turbine with a solar panel array. The first one relies on the adoption of a parabolic trough network with an intermediate thermal carrier, while the second one considers the direct heating of the working air in a solar tower system. The first solution also includes a bottoming organic Rankine cycle (ORC) plant, so that it is mainly addressed to the power output increase. The second one involves a relevant temperature increase of the air entering the combustor, so allowing a direct fuel energy saving, whose amount is strongly variable with both the solar irradiance and the eventual part-load operation. In addition, the latter solar-assisted scheme involves noticeable variations in the conditions for the combustion development. This suggested the authors to proceed with a detailed CFD analysis of the combustion, after a preliminary thermal cycle study for highlighting the main benefits from the solar integration of the power plant.