Unmanned Aerial Vehicle (UAV) development has garnered significant attention, yet one of the major challenges in the field is how to rapidly iterate the overall design scheme of UAVs to meet actual needs, thereby shortening development cycles and reducing costs. This study integrates a “Decision Support System” and “Live Virtual Construct (LVC) environment” into the existing Model-Based Systems Engineering framework, proposing a Modified Model-Based Systems Engineering methodology for the full-process development of UAVs. By constructing a decision support system and a hybrid reality space—which includes pure digital modeling and simulation analysis software, semi-physical simulation platforms, real flight environments, and virtual UAVs—we demonstrate this method through the development of the electric vertical take-off and landing fixed-wing UAV DB1. This method allows for rapid, on-demand iteration in a fully digital environment, with feasibility validated by comparing actual flight test results with mission indicators. The study results show that this approach significantly accelerates UAV development while reducing costs, achieving rapid development from “demand side to design side” under the “0 loss” background. The DB1 platform can carry a 2.5 kg payload, achieve over 40 min of flight time, and cover a range of more than 70 km. This work provides valuable references for UAV enterprises aiming to reduce costs and increase efficiency in the rapid commercialization of UAV applications.