The effect of different heating mechanisms on the porous network of activated carbons (AC) previously exhausted with phenol has been studied. To this end, thermal treatment of the exhausted AC was performed using two experimental devices: a single mode microwave device operating at 2450 MHz and a conventional electric furnace. By employing microwave energy, the regeneration time was considerably shortened compared to conventional thermal heating. Moreover, microwave heating preserved the porous structure of the regenerated AC more efficiently than treatment in a conventional device. In both cases successive regeneration cycles reduced the microporosity of the activated carbons. However, conventional heating shifted the micropore size distribution to pores of narrower sizes. The apparent BET surface areas were also reduced significantly over the regeneration cycles. A loss of the adsorptive capacity of the carbon material was observed after six adsorption-desorption cycles in both systems. The phenol adsorption capacities decreased to a greater extent in the samples regenerated in the electric furnace.