The grain size distribution of the transported bed load was experimentally investigated under unsteady flow conditions with bimodal mixture of sand and gravel in a laboratory flume. Five various triangular hydrographs were generated. A clockwise behavior for the total bed load versus shear velocity was observed meaning that the bed load during rising limb was higher than that of falling limb. It was found that the percent finer at the plateau of bimodal sediment size distribution curve had higher values during the initial and final phases compared to those obtained during the peak time. At all plateaus, the percent finer values related to the hydrograph peak discharge were in the same order of magnitude with that of the bed material. The sand content of the transported bed material initially decreased, then maintained a constant value during a certain time interval and finally returned to its original value. The sand percent of the bed load decreased in the falling limb showing a counterclockwise loop and the duration of the hydrograph did not affect the results considerably. The greater the peak flow rate of the hydrograph, the greater was the hysteresis. The bimodality index was calculated for all transported sediment samples and it was revealed that its initial and final values were less than that of the bed material but it was approximately the same elsewhere. The 5% finer sediment amount was nearly equal during rising and falling limbs. It was revealed that D50 value of the bed load decreased in the rising limb showing a clockwise loop. The hysteresis was not considerably changed according to the hydrograph characteristics. The clockwise type hysteresis was also observed for the size group of D95. The lag increased as the peak flow rate increased. A strong relation was found between the dimensionless total bed load Wt* and the total work index Wk as well as Wk and the ratio WR/WF. The correlations between the dimensionless total bed load and the unsteadiness parameters P, and Pmod were very weak, whereas a high value of determination coefficient was obtained with the unsteadiness parameter Pgt, implying an appreciable interdependence.