Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Time-lapse gravity is most commonly used to monitor fluid movement and is especially useful when monitoring water encroachment in a gas reservoir. Although time-lapse gravity data are directly sensitive to the fluid saturation changes in reservoirs, it is still necessary to integrate multiple types of data with complementary information to enhance the time-lapse gravity interpretation. When monitoring water-influx in a reservoir, the changes in water yield in production wells may directly indicate saturation changes with time and provide such complementary information about the areas of fluid movement. We present a workflow to invert a time-lapse gravity data set and production data to help monitor the edge water encroachment through a case study at the Sebei gas field in Western China. Three time-lapse gravity surveys were acquired between 2011 and 2013 and production data were also collected from 286 wells during the same period of time. We integrate the two data sets and the structural information in the reservoir through a framework of constrained time-lapse gravity inversion. In this workflow, we incorporate the information from the production data into the inversion by converting the gas and water yield into a reference model. We also incorporate geological structural information through spatially varying bound constraints. Through this approach, we construct a set of time-lapse density contrast models that are consistent with the time-lapse gravity data, production data, and structural information. The resultant density contrast models better delineate the regions of the reservoir with increased water influx and also enable us to produce improved porosity estimations in the reservoir.
Time-lapse gravity is most commonly used to monitor fluid movement and is especially useful when monitoring water encroachment in a gas reservoir. Although time-lapse gravity data are directly sensitive to the fluid saturation changes in reservoirs, it is still necessary to integrate multiple types of data with complementary information to enhance the time-lapse gravity interpretation. When monitoring water-influx in a reservoir, the changes in water yield in production wells may directly indicate saturation changes with time and provide such complementary information about the areas of fluid movement. We present a workflow to invert a time-lapse gravity data set and production data to help monitor the edge water encroachment through a case study at the Sebei gas field in Western China. Three time-lapse gravity surveys were acquired between 2011 and 2013 and production data were also collected from 286 wells during the same period of time. We integrate the two data sets and the structural information in the reservoir through a framework of constrained time-lapse gravity inversion. In this workflow, we incorporate the information from the production data into the inversion by converting the gas and water yield into a reference model. We also incorporate geological structural information through spatially varying bound constraints. Through this approach, we construct a set of time-lapse density contrast models that are consistent with the time-lapse gravity data, production data, and structural information. The resultant density contrast models better delineate the regions of the reservoir with increased water influx and also enable us to produce improved porosity estimations in the reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.