Abiotic stresses affect adversely the growth and productivity of crops. Among abiotic stresses, salinity is one of the major factors leading to crop losses. According to the UN Food and Agriculture Organization, more than 800 Mha of land is salt-affected worldwide. The problem of soil salinization is becoming more serious due to scanty rainfall, repetitive sea water invasion, heavy utilization of ground water for agricultural and industrial purposes, and degradation of saline parent rock. The area under cultivation is fast getting depleted and becoming unsuitable for agricultural crops. Soil salinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plant adaptation to salinity stress involves a plethora of genes involved in ion transport and compartmentalization (ion homeostasis), compatible solutes/osmolytes, reactive oxygen species, and antioxidant defense mechanism. Transporters are an important group of genes that play a pivotal role in ion homeostasis in plants (Na þ /H þ antiporters like SOS1 and NHX1, and proton pump HKT1). Over the last two decades the major studies on the molecular mechanisms of salt tolerance have concentrated on glycophytes; however, only limited studies have been performed on halophytes. Halophytes have a unique genetic makeup that provides an advantage for the study of salt-tolerance mechanisms. Halophytes maintain a low salt concentration inside the cytosol by sequestration in vacuoles or extrusion of Na þ outside the plasma membrane or secretion of salt outside the plant (bladders, salt glands). Since halophytes are very important for the study of salt-tolerance mechanisms, this chapter is focused on the work carried out on transporter genes from halophytes present at the plasma membrane and tonoplast controlling Na þ homeostasis under salinity.
IntroductionPlants face different major abiotic stresses such as high salinity, drought, and temperature extremes on a day-to-day basis. These abiotic stresses cause adverse 685