We shall present here the first experimental results for microwave spectroscopy of the hyperfine structure of antiprotonic He-3 and a comparison to numerical simulations of the measurement. Due to the helium nuclear spin, antiprotonic He-3 has a more complex hyperfine structure than antiprotonic He-4 which has already been studied before. Thus a comparison between theoretical calculations and the experimental results will provide a more stringent test of the three-body quantum electrodynamics (QED) theory. The comparison of measured data to simulations allows to investigate the collisional processes between the helium atoms of the target medium and the antiprotonic helium atomcules. The collision rates can not be calculated exactly, but estimated by comparison of numeric simulations with the experimental results. Two out of four super-super-hyperfine (SSHF) transition lines of the (n, L) = (36, 34) state were observed. The measured frequencies of the