At the University of Pisa, the DoPET (Dosimetry with a Positron Emission Tomograph) project has focused on the development and characterization of an ad hoc, scalable, dual-head PET prototype for in-beam treatment planning verification of the proton therapy. In this paper we report the first results obtained with our current prototype, consisting of two opposing lutetium yttrium orthosilicate (LYSO) detectors, each one covering an area of 4.5x4.5 cm(2). We measured the beta(+)-activation induced by 62 MeV proton beams at Catana facility (LNS, Catania, Italy) in several plastic phantoms. Experiments were performed to evaluate the possibility to extract accurate phantom geometrical information from the reconstructed PET images. The PET prototype proved its capability of locating small air cavities in homogeneous PMMA phantoms with a submillimetric accuracy and of distinguishing materials with different (16)O and (12)O content by back mapping phantom geometry through the separation of the isotope contributions. This could be very useful in the clinical practice as a tool to highlight anatomical or physiological organ variations among different treatment sessions and to discriminate different tissue types, thus providing feedbacks for the accuracy of dose deposition