Synthesis and characterization of α-Fe2O3 nanoparticles were obtained from extraction of ilmenite iron sand with coprecipitation method and to obtain α-Fe2O3 nanoparticles, high energy milling (HEM) was used. Surface morphology and identification of the elements contained in the sample were analyzed using scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). For phase analysis and crystal structure, X-ray diffractometer (XRD) was used. Moreover a vibrating magnetometer sample (VSM) was used to characterize its magnetic properties, while tunneling electron microscopy (TEM) was used for particle size characterization. Ilmenite-type iron sand has a diverse particle shape with a size of more than 100 μm with ilmenite (FeTiO3) mineral content of about 64.7%. The results of extraction using coprecipitation method with sintering 750 °C, obtained hematite α-Fe2O3 material which has not been saturated to an external magnetic field of 1 tesla, the magnetic remanent value (Mr) is about 0.8 emu/g and the coercivity field value is Hc around 773 Oe. The average size of hematite α-Fe2O3 particles after being milled 50 hours is between 15-30 nm with a cube-like shape.