Abstract:The determination of the proper rheological behaviour of the polymer melt within micro structured geometry is vital for accurately simulating the micro moulding. The paucity of suitable equipments is one of main hurdles in the investigation of micro melt rheology. In the present study, a measurement system for the melt viscosity of low and high density polyethylene polymer melts flowing through micro-channels was established. The capillary flow model with Rabinowitsch correction was used in the calculations of the viscosity based on the measured pressure drop and volumetric flow rate. The effect of the morphology structure on the viscosity characteristics for both the LDPE and HDPE resins within micro-channels was investigated and discussed. It was found that the measured viscosity values for LDPE and HDPE in the test ranges are significantly lower (about 40~56% and 22~29% for LDPE and HDPE, respectively, flowing through a channel size of 150μm) than those obtained with a traditional capillary rheometer. Moreover, both the percentage reduction in the viscosity value and the ratio of the slip velocity to the mean velocity increase as the micro-channel size decreases. It can be observed that the rheological behaviours of the HDPE and LDPE resins in microscopic scale are different from those in macroscopic scale as a result of the wall slip effect. It also revealed that the wall slip occurs more easily for the LDPE resin within micro channels than HDPE resin due to enlarged effect of morphology structure.