Green chemistry focuses on reducing the environmental impacts of chemicals through sustainable practices. Traditional methods for extracting bioactive compounds from Eucalyptus marginata leaves, such as hydro-distillation and organic solvent extraction, have limitations, including long extraction times, high energy consumption, and potential toxic solvent residues. This study explored the use of supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), and gas-expanded liquid (GXL) processes to improve efficiency and selectivity. These techniques were combined in a single mixture design, where CO2 was used in the experiments carried out under SFE, while water and ethanol were used for the PLE and GXL experiments by varying the concentration of the solvents to cover all the extraction possibilities. The neuroprotective activity of the extracts was evaluated by measuring their antioxidant, anti-inflammatory, and acetylcholinesterase inhibition properties. The optimization resulted in a novel GXL extraction with an optimal ternary mixture of 27% CO2, 55% ethanol, and 18% water, with a high degree of desirability (R2 = 88.59%). Chromatographic analysis carried out by GC-MS and HPLC-ESI-MS/MS identified over 49 metabolites. The designed sustainable extraction process offers a promising approach for producing phenolic-rich plant extracts in industrial applications.