A prototype ultrasonic liquid film sensor was applied to a high-temperature steam-water two-phase flow experiment. The liquid film sensor was vertically installed in a loop which was connected to HUSTLE, a multi-purpose steam source test facility. The hydraulic diameter of the measurement section was 9.4 mm. The output waveforms of the sensor were acquired with a digital oscilloscope. The fluid temperature and system pressure were kept at 288 • C and 7.2 MPa, respectively, during the experiment. The pulse-echo method was used to calculate the liquid film thickness. The cross-correlation calculation was utilized to determine the time difference between the pulse reflected at the sensor surface and the pulse reflected at the liquid film surface. The time-averaged liquid film thicknesses were less than 0.055 mm in the annular flow condition. The increase of the time-averaged thickness was small with the change of the gas momentum flux. The film thicknesses measured with the sensor were compared with the past experimental results; the former were smaller than one-fourth of the thickness estimated as the mean film thickness. The comparison results suggested that the continuous liquid sublayer thickness was measured with the liquid film sensor.