Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Cardiovascular disease is the leading cause of mortality in the US. Studies suggest a role for environmental exposures in the etiology of cardiovascular disease, including exposure to arsenic through drinking water. Arsenic exposure during pregnancy has been shown to have effects on offspring, but few studies have examined impacts on maternal cardiovascular health. While our prior work documented the detrimental effect of arsenic on the maternal heart during pregnancy, our current study examines the effect of gestational arsenic exposure on the maternal heart postpartum. Timed-pregnant wild-type (C57BL/6J) mice were exposed to 0, 100 or 1000 μg/L sodium arsenite (NaAsO2) via drinking water from embryonic day 2.5 (E2.5) until parturition. Postpartum heart structure and function was assessed via transthoracic echocardiography and gravimetric measurement. Hypertrophic markers were probed via qRT-PCR and western blot. Isolated cardiomyocyte Ca2+-handling and contraction were also assessed, and expression of proteins associated with Ca2+ handling and contraction. Interestingly, we found that exposure to either 100 or 1000 μg/L sodium arsenite increased postpartum heart size at P12 vs. non-exposed postpartum controls. At the cellular level, we found altered cardiomyocyte Ca2+-handling and contraction. We also found altered expression of key contractile proteins, including α-Actin and cardiac myosin binding protein C (cMyBP-c). Together, these findings suggest that gestational arsenic exposure impacts the postpartum maternal heart, possibly inducing long-term cardiovascular changes. Furthermore, these findings highlight the importance of reducing arsenic exposure during pregnancy, and the need for more research on the impact of arsenic and other environmental exposures on maternal heart health and adverse pregnancy events.
Cardiovascular disease is the leading cause of mortality in the US. Studies suggest a role for environmental exposures in the etiology of cardiovascular disease, including exposure to arsenic through drinking water. Arsenic exposure during pregnancy has been shown to have effects on offspring, but few studies have examined impacts on maternal cardiovascular health. While our prior work documented the detrimental effect of arsenic on the maternal heart during pregnancy, our current study examines the effect of gestational arsenic exposure on the maternal heart postpartum. Timed-pregnant wild-type (C57BL/6J) mice were exposed to 0, 100 or 1000 μg/L sodium arsenite (NaAsO2) via drinking water from embryonic day 2.5 (E2.5) until parturition. Postpartum heart structure and function was assessed via transthoracic echocardiography and gravimetric measurement. Hypertrophic markers were probed via qRT-PCR and western blot. Isolated cardiomyocyte Ca2+-handling and contraction were also assessed, and expression of proteins associated with Ca2+ handling and contraction. Interestingly, we found that exposure to either 100 or 1000 μg/L sodium arsenite increased postpartum heart size at P12 vs. non-exposed postpartum controls. At the cellular level, we found altered cardiomyocyte Ca2+-handling and contraction. We also found altered expression of key contractile proteins, including α-Actin and cardiac myosin binding protein C (cMyBP-c). Together, these findings suggest that gestational arsenic exposure impacts the postpartum maternal heart, possibly inducing long-term cardiovascular changes. Furthermore, these findings highlight the importance of reducing arsenic exposure during pregnancy, and the need for more research on the impact of arsenic and other environmental exposures on maternal heart health and adverse pregnancy events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.