Exposure to phthalates has been shown to impede the human endocrine system, resulting in deleterious effects on pregnant women and their children. Phthalates modify DNA methylation patterns in infant cord blood. We examined the association between prenatal phthalate exposure and DNA methylation patterns in cord blood in a Korean birth cohort. Phthalate levels were measured in 274 maternal urine samples obtained during late pregnancy and 102 neonatal urine samples obtained at birth, and DNA methylation levels were measured in cord blood samples. For each infant in the cohort, associations between CpG methylation and both maternal and neonate phthalate levels were analyzed using linear mixed models. The results were combined with those from a meta-analysis of the levels of phthalates in maternal and neonatal urine samples, which were also analyzed for MEOHP, MEHHP, MnBP, and DEHP. This meta-analysis revealed significant associations between the methylation levels of CpG sites near the CHN2 and CUL3 genes, which were also associated with MEOHP and MnBP in neonatal urine. When the data were stratified by the sex of the infant, MnBP concentration was found to be associated with one CpG site near the OR2A2 and MEGF11 genes in female infants. In contrast, the concentrations of the three maternal phthalates showed no significant association with CpG site methylation. Furthermore, the data identified distinct differentially methylated regions in maternal and neonatal urine samples following exposure to phthalates. The CpGs with methylation levels that were positively associated with phthalate levels (particularly MEOHP and MnBP) were found to be enriched genes and related pathways. These results indicate that prenatal phthalate exposure is significantly associated with DNA methylation at multiple CpG sites. These alterations in DNA methylation may serve as biomarkers of maternal exposure to phthalates in infants and are potential candidates for investigating the mechanisms by which phthalates impact maternal and neonatal health.