Abstract-Endovascular treatment plays an important role in the minimally invasive treatment of patients with vascular diseases, a major cause of morbidity and mortality worldwide. Given a segmentation of an angiography, quantitative analysis of abnormal structures can aid radiologists in choosing appropriate treatments and apparatuses. However, effective quantitation is only attainable if the abnormalities are identified from the vasculature. To achieve this, a novel method is developed, which works on the simpler shape of normal vessels to identify different vascular abnormalities (viz. stenotic atherosclerotic plaque, and saccular and fusiform aneurysmal lumens) in an indirect fashion, instead of directly manipulating the complex-shaped abnormalities. The proposed method has been tested on three synthetic and 17 clinical data sets. Comparisons with two related works are also conducted. Experimental results show that our method can produce satisfactory identification of the abnormalities and approximations of the ideal post-treatment vessel lumens. In addition, it can help increase the repeatability of the measurement of clinical parameters significantly.