Background Aseptic revision THA and TKA are associated with an increased risk of adverse outcomes compared with primary THA and TKA. Understanding the risk profiles for patients undergoing aseptic revision THA or TKA may provide an opportunity to decrease the risk of postsurgical complications. There are risk stratification tools for postoperative complications after aseptic revision TKA or THA; however, current tools only include nonmodifiable risk factors, such as medical comorbidities, and do not include modifiable risk factors. Questions/purposes (1) Can machine learning predict 30day mortality and complications for patients undergoing aseptic revision THA or TKA using a cohort from the American College of Surgeons National Surgical Quality Improvement Program database? (2) Which patient variables are the most relevant in predicting complications? Methods This was a temporally validated, retrospective study analyzing the 2014 to 2019 National Surgical Quality Improvement Program database, as this database captures a large cohort of aseptic revision THA and TKA patients across a broad range of clinical settings and includes preoperative laboratory values. The training data set was 2014 to 2018, and 2019 was the validation data set. Given that predictive models learn expected prevalence of outcomes, this split allows assessment of model performance in contemporary patients. Between 2014 and 2019, a total of 24,682 patients underwent aseptic revision TKA and 17,871 patients underwent aseptic revision THA. Of those, patients with CPT codes corresponding to aseptic revision TKA or THA were considered as potentially eligible. Based on excluding procedures involving unclean wounds, 78% (19,345 of 24,682) of aseptic revision TKA procedures and 82% (14,711 of 17,871) of aseptic revision THA procedures were eligible. Ten percent of patients in each of the training and validation cohorts had missing predictor variables. Most of these missing data were preoperative Each author certifies that there are no funding or commercial associations (consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article related to the author or any immediate family members. All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research® editors and board members are on file with the publication and can be viewed on request. Ethical approval for this study was obtained from the institutional review board at the Naval Medical Center Portsmouth, VA, USA.