Introduction. With the availability of low-cost head-mounted displays (HMDs), virtual reality environments (VREs) are increasingly being used in medicine for teaching and clinical purposes. Our aim was to develop an interactive, userfriendly VRE for tridimensional visualization of patient-specific organs, establishing a workflow to transfer 3-dimensional (3D) models from imaging datasets to our immersive VRE. Materials and Methods. This original VRE model was built using open-source software and a mobile HMD, Samsung Gear VR. For its validation, we enrolled 33 volunteers: morphologists (n = 11), trainee surgeons (n = 15), and expert surgeons (n = 7). They tried our VRE and then filled in an original 5-point Likert-type scale 6-item questionnaire, considering the following parameters: ease of use, anatomy comprehension compared with 2D radiological imaging, explanation of anatomical variations, explanation of surgical procedures, preoperative planning, and experience of gastrointestinal/neurological disorders. Results in the 3 groups were statistically compared using analysis of variance. Results. Using cross-sectional medical imaging, the developed VRE allowed to visualize a 3D patient-specific abdominal scene in 1 hour. Overall, the 6 items were evaluated positively by all groups; only anatomy comprehension was statistically significant different among the 3 groups. Conclusions. Our approach, based on open-source software and mobile hardware, proved to be a valid and well-appreciated system to visualize 3D patient-specific models, paving the way for a potential new tool for teaching and preoperative planning.