Molecularly imprinted polymers of glycyrrhizic acid were prepared by solution polymerization using glycyrrhizic acid as the template molecule, N-vinypyrrolidone as functional monomer, N,N-methylene bisacrylamide as cross-linker and ascorbic acid and hydrogen peroxide as initiators. Focused on the adsorption capacity and separation degree of the polymer to glycyrrhizic acid, the effects of the monomers, crosslinker and initiators were investigated and optimized. Finally, the structure of the polymer was characterized by using Fourier transform infrared spectroscopy and scanning electron microscopy. To obtain objective results, non-imprinted molecular polymers prepared under the same conditions were also characterized. The adsorption quantity of the polymer was measured by high-performance liquid chromatography. Under the optimum conditions, the maximum adsorption capacity of glycyrrhizic acid approached 15 mg/g, and the separation degree was as high as 2.5. The adsorption kinetics could be well described by a pseudo-first-order model, while the thermodynamics of the adsorption process could be described by the Langmuir model.