In this study, the relationship between structure and mechanical properties of aged PBT composite was investigated. Short glass fiber reinforced PBT composites were subjected to aging tests in environments typically found in hermetic compressors. Diffusion kinetics were addressed by a periodic control of samples weight, and samples aged in oil presented mass variation of 1.2-1.6%, depending on test temperature. Most diffusion curves followed Fickian behavior, and the diffusion coefficient for each condition was obtained. Aging effect was investigated by 3-point bending tests, where samples aged at 180°C presented a significant reduction in all evaluated properties. Control environment induced minor variations, supposedly related to physical aging and increase in crystallinity. Imaging analyses through scanning electronic microscopy (SEM) technique allowed observation of the predominant fracture mechanism. Aged samples presented few or no localized plastic deformation at all, which is in accordance with the lower strain observed in mechanical tests. Differential scanning calorimetry (DSC) analyses proved degree of crystallinity increase for all aged samples, depending mainly on temperature of exposure. Infrared (FTIR) analysis proved the presence of oil absorbed in PBT chemical structure, and it was proposed a method for comparing degree of crystallinity, based on the absorbance bands ratio A0(1458 cm -1 )/A0(956 cm -1 ).