Here the fabrication of a novel PVA/CMC/halloysite nanoclay membrane for the effective adsorption of cationic dye (methylene blue, MB) from aqueous environment is reported. The membranes were analyzed through scanning electron microscopy (SEM), optical microscopy (OM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), contact angle and universal testing machine (UTM) analysis. The adsorption behavior of the membrane in terms of nanoclay loading, contact time, initial concentration of MB, pH and temperature were also discussed. The membrane exhibits excellent removal efficiency (99.5%) for MB in the optimal conditions such as nanoclay dose = 6 wt%, initial dye concentration = 10 ppm, contact time = 240 min, pH = 10 and temperature = 30 °C. Three isotherm models (Freundlich, Langmuir and Temkin) were employed to analyze the dye adsorption data. The results revealed that the adsorption process could be described well with both Freundlich and Langmuir isotherm model. The kinetics of MB adsorption onto membrane follows pseudo-second-order model while thermodynamic parameter indicate that adsorption is feasible and endothermic in nature. The antibacterial studies revealed that the PVA/CMC/halloysite nanoclay membrane possess notable antibacterial property. Finally, the desorption studies showed that the membrane have good reusability even after four recycles.