Abstract:To improve the pharmacokinetics and stability of recombinant human erythropoietin (rhEPO), rhEPO was successfully formulated into poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) di-block copolymeric micelles at diameters ranging from 60 to 200 nm with narrow polydispersity indices (PDIs; PDI , 0.3) and trace amount of protein aggregation. The zeta potential of the spherical micelles was in the range of −3.78 to 4.65 mV and the highest encapsulation efficiency of rhEPO in the PEG-PLA micelles was about 80%. In vitro release profiles indicated that the stability of rhEPO in the micelles was improved significantly and only a trace amount of aggregate was found. Pharmacokinetic studies in rats showed highly enhanced plasma retention time of the rhEPO-loaded PEG-PLA micelles in comparison with the native rhEPO group. Increased hemoglobin concentrations were also found in the rat study. Native polyacrylamide gel electrophoresis results demonstrated that rhEPO was successfully encapsulated into the micelles, which was stable in phosphate buffered saline with different pHs and concentrations of NaCl. Therefore, PEG-PLA micelles can be a potential protein drug delivery system.