Cellulose nanocrystals (CNCs) were used as a sustainable additive to improve the hydrophilicity, permeability, antifouling, and mechanical properties of blend membranes. Different CNC loadings (0-1.2 wt %) in cellulose acetate (CA) membranes were studied. The blend membranes were prepared by a phase-inversion process, and their chemical structure and morphological properties were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscopy, porosity, and mean pore size and contact angle measurement. The blend membranes became more porous and more interconnected after the addition of CNCs. The thickness of the top layer decreased and a few large holes in the porous substrate appeared with increasing CNC loading. In comparison with the pure CA membranes, the pure water flux of the blend membranes increased with increasing CNC loading. It reaches a maximum value of 76 LÁm 22 Áh 21 when the CNC loading was 0.5 wt %. The antifouling properties of the CA membrane were significantly improved after the addition of CNCs, and the flux recovery ratio value increased to 68% with the addition of 0.5 wt % CNCs. In comparison with that of the pure CA membranes, the tensile strength of the composite membranes increased by 47%. This study demonstrated the importance of using sustainable CNCs to achieve great improvements in the physical and chemical performance of CA ultrafiltration membranes and provided an efficient method for preparing high-performance membranes.