Organofunctionalized apatite nanoparticles were prepared using a one step process involving dissolution/precipitation of natural phosphate rock and covalent grafting of nitrilotris(methylene)triphosphonate (NTP). The synthesized materials were characterized by Brunauer–Emmett–Teller (BET) surface measurement, thermogravimetry, inductively coupled plasma emission spectroscopy (ICP-ES), elemental analysis, multinuclear solid state cross-polarization/magic angle spinning (CP/MAS) and single-pulse NMR spectroscopy, transmission electron microscopy (TEM) and energy dispersive x-ray analysis (EDXA). After grafting BET measurements yielded particle specific surface areas ranging from 88 to 193 m2 g−1 depending on the grafted phosphonate. The results show that the surfaces of the nanoapatite particles can be covered with functional groups bound through a variable number of R-P-O-Ca bonds to render them organoapatites.