Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Approximately 50% of global plastic wastes are produced from plastic packaging, a substantial amount of which is disposed of within a few minutes of its use. Although many plastic types are designed for single use, they are not always disposable. It is now widely acknowledged that the production and disposal of plastics have led to a plethora of negative consequences, including the contamination of both groundwater and soil resources and the deterioration of human health. The undeniable impact of excessive plastic manufacturing and waste generation on the global plastic pollution crisis has been well documented. Therefore, degradable polymers are a crucial solution to the problem of the non-degradation of plastic wastes. The disadvantage of degradable polymers is their high cost, so blending them with natural polymers will reduce the cost of final products and maximize their degradation rate, making degradable polymers competitive with industrial polymers that are currently in use daily. In this work, we will delineate various degradable polymers, including polycaprolactone, starch, and cellulose. Furthermore, we will elucidate several aspects of polyvinyl alcohol (PVA) and its blends with natural polymers to show the effects of adding natural polymers on PVA properties. This paper will study cost-effective and ecologically acceptable polymers by combining inexpensive natural polymers with readily accessible biodegradable polymers such as polyvinyl alcohol (PVA).
Approximately 50% of global plastic wastes are produced from plastic packaging, a substantial amount of which is disposed of within a few minutes of its use. Although many plastic types are designed for single use, they are not always disposable. It is now widely acknowledged that the production and disposal of plastics have led to a plethora of negative consequences, including the contamination of both groundwater and soil resources and the deterioration of human health. The undeniable impact of excessive plastic manufacturing and waste generation on the global plastic pollution crisis has been well documented. Therefore, degradable polymers are a crucial solution to the problem of the non-degradation of plastic wastes. The disadvantage of degradable polymers is their high cost, so blending them with natural polymers will reduce the cost of final products and maximize their degradation rate, making degradable polymers competitive with industrial polymers that are currently in use daily. In this work, we will delineate various degradable polymers, including polycaprolactone, starch, and cellulose. Furthermore, we will elucidate several aspects of polyvinyl alcohol (PVA) and its blends with natural polymers to show the effects of adding natural polymers on PVA properties. This paper will study cost-effective and ecologically acceptable polymers by combining inexpensive natural polymers with readily accessible biodegradable polymers such as polyvinyl alcohol (PVA).
The escalating environmental crisis posed by single-use plastics underscores the urgent need for sustainable alternatives. This study provides an approach to introduce biodegradable polymer blends by blending synthetic polyvinyl alcohol (PVA) with natural polymers—corn starch (CS) and hydroxypropyl methylcellulose (HPMC)—to address this challenge. Through a comprehensive analysis, including of the structure, mechanical strength, water solubility, biodegradability, and thermal properties, we investigated the enhanced performance of PVA-CS and PVA-HPMC blends over conventional polymers. Scanning electron microscopy (SEM) findings of pure PVA and its blends were studied, and we found a complete homogeneity between the PVA and both types of natural polymers in the case of a high concentration of PVA, whereas at lower concentration of PVA, some granules of CS and HMPC appear in the SEM. Blending corn starch (CS) with PVA significantly boosts its biodegradability in soil environments, since adding starch of 50 w/w duplicates the rate of PVA biodegradation. Incorporating hydroxypropyl methylcellulose (HPMC) with PVA not only improves water solubility but also enhances biodegradation rates, as the addition of HPMC increases the biodegradation of pure PVA from 10 to 100% and raises the water solubility from 80 to 100%, highlighting the significant acceleration of the biodegradation process and water solubility caused by HPMC addition, making these blends suitable for a wide range of applications, from packaging and agricultural films to biomedical engineering. The thermal properties of pure PVA and its blends with natural were studied using diffraction scanning calorimetry (DSC). It is found that the glass transition temperature (Tg) increases after adding natural polymers to PVA, referring to an improvement in the molecular weight and intermolecular interactions between blend molecules. Moreover, the amorphous structure of natural polymers makes the melting temperature ™ lessen after adding natural polymer, so the blends require lower temperature to remelt and be recycled again. For the mechanical properties, both types of natural polymer decrease the tensile strength and elongation at break, which overall weakens the mechanical properties of PVA. Our findings offer a promising pathway for the development of environmentally friendly polymers that do not compromise on performance, marking a significant step forward in polymer science’s contribution to sustainability. This work presents detailed experimental and theoretical insights into novel polymerization methods and the utilization of biological strategies for advanced material design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.